CONVERSION CONSTANTS

The units and symbols used in this catalogue comply with the requirements of the Measuring Units and National Measuring Standards Act.

LENGTHS

Inches x 25.4 = millimetres Inches x 0.0254 = metres Feet x 0.030480 = metres Yards x 0.91440 = kilometres Statute \miles x 1.60935 = kilometres

TORQUE

Kilogramforce Metre (kgf.m) x 9.81 = newton metre (N.m) Pound Feet x 1.36 = newton metre (N.m) Pound Inches x 0.113 = newton metre (N.m)

FORCE

Kilogramforce x 9.81 = newtons (N)
Pound Feet x 1.36 = newton metre (N.m)
Pound Inches x 0.113 = newton metre (N.m)

POWER

Horse Power (hp) x 0.746 = kilowatt (kW)

ELECTRICAL POWER

3 Phase AC Power = $\sqrt{3}$ V x I x cos ∂ Assume power factor (cos ∂) = 0.8 Absorbed Power = P x $\dot{\eta}$ $\dot{\eta}$ is efficiency of motor DC Power = V x I x cos ∂ = I² x R

ADDITIONAL SYMBOLS USED

r/min = revolutions per minute m/s = metres per second To covert foot per minute to m/s multiply by 5.08×10^3

TORQUE AND POWER EQUIVALENTS

The kilowatt (kW) is the common unit of mechanical power, i.e. the rate of doing work. Torque is a turning moment or twisting effort and is expressed in newton metre (N.m).

 $N.m = \frac{Kw \times 9550}{r/min}$ $\frac{N.m \times r/min}{9550}$

INERTIA

Pound feet squared (lbf.ft²) x 0.41339 = newton metres squared (N.m²)

POLAR MOMENT OF INERTIA

The polar moment of inertia. I or flywheel effect of a sold cylinder, disc or hollow cylinder can be derived from the following formula:

For a disc or cylinder. $I = 0.5 m.r^2$

Where m is the mass of the disc or cylinder and R and r are the outside and inside radii respectively.

PERIPHERAL SPEED

$$s = \frac{d \times n}{19 \ 100}$$

Where s = belt speed ...m/s d = pulley pitch diameter ...mm n = notational speed ... r/min

TEMPERATURE

$$^{\circ}C = \begin{array}{ccc} & (F - 32) & 5 \\ & 9 & & ^{\circ}F = \begin{array}{ccc} & (^{\circ}C \times 9) \\ & 5 & + 32 \end{array}$$

Where °F = degrees Fahrenheit °C = degrees Centigrade